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Deformations (a.k.a. Minkowski summands)
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Minkowski sum

Definition

P, Q polytopes. Minkowski sum:
P+Q={p+q: pcP,qcQ}

N.B. Vert(P + Q) C Vert(P) + Vert(Q)
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Minkowski sum
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Minkowski summands

Definition

Q is a Minkowski summand, a.k.a. deformation, of P when there
exists R and A > 0 with:

AP=Q+R

.
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Minkowski summands

Definition

Q is a Minkowski summand, a.k.a. deformation, of P when there
exists R and A > 0 with:

AP=Q+R

Deformation cone: DC(P) = {Q ; Q is a deformation of P}
Minkowski indecomposable: deformations of P are dilations of P
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Minkowski summands

Definition

Q is a Minkowski summand, a.k.a. deformation, of P when there
exists R and A > 0 with:

AP=Q+R

Deformation cone: DC(P) = {Q ; Q is a deformation of P}
Minkowski indecomposable: deformations of P are dilations of P

What is the best way to write P as a Minkowski sum ?

e With the fewest number of (indecomposable) summands ?

e With the (indecomposable) summands of smallest dimension ?
e Respecting some symmetries ?

o . ..
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Minkowski summands

Definition

Q is a Minkowski summand, a.k.a. deformation, of P when there
exists R and A > 0 with:

AP=Q+R

Deformation cone: DC(P) = {Q ; Q is a deformation of P}
Minkowski indecomposable: deformations of P are dilations of P

What is the best way to write P as a Minkowski sum ?

e With the fewest number of (indecomposable) summands ?

e With the (indecomposable) summands of smallest dimension ?
e Respecting some symmetries ?

o . ..

—> What is the structure of DC(P) ?
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Minkowski summands
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Deformation

Observation

If P=Q + R, then the edges of P “are” edges of Q or of R.
= | can write deformations of P using edge-length vectors.
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Deformation

Observation

If P=Q + R, then the edges of P “are” edges of Q or of R.
= | can write deformations of P using edge-length vectors.
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Deformations of 3-dim permutahedron

Permutahedron [y Sequence of deformations of Iy
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Edge-length deformation cone

Q deformation of P < same edge-directions, but different lengths

Definition

Edge-length deformation cone: DC(P) = {Q ; Q same edge-dir P}
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Edge-length deformation cone

Q deformation of P < same edge-directions, but different lengths

Definition
Edge-length deformation cone: DC(P) = {Q ; Q same edge-dir P}

Parametrization:

edge-length vector.
R £= (ge)e edge
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Edge-length deformation cone

Q deformation of P < same edge-directions, but different lengths

Definition
Edge-length deformation cone: DC(P) = {Q ; Q same edge-dir P}

Parametrization:

v

edge-length vector.
R £= (ge)e edge

Germain Poullot A visit of the Submodular Cone 8/45



Edge-length deformation cone

Q deformation of P < same edge-directions, but different lengths

Definition

Edge-length deformation cone: DC(P) = {Q ; Q same edge-dir P}

4 N Parametrization:

edge-length vector.
. £= (ge)e edge
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Edge-length deformation cone

Q deformation of P < same edge-directions, but different lengths

Definition

Edge-length deformation cone: DC(P) = {Q ; Q same edge-dir P}

’

4 N Parametrization:

edge-length vector.
£= (ﬁe) e edge
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Edge-length deformation cone

Q deformation of P < same edge-directions, but different lengths

Definition

Edge-length deformation cone: DC(P) = {Q ; Q same edge-dir P}

’

X NIV Parametrization:

edge-length vector.
L= (ﬁe) e edge

Polygonal face equations:
linear equations on £
le > 0 for all e edge
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Edge-length deformation cone

Q deformation of P < same edge-directions, but different lengths

Definition

Edge-length deformation cone: DC(P) = {Q ; Q same edge-dir P}

’

X N Parametrization:

edge-length vector.
. £= (ge)e edge
< ) Polygonal face equations:
linear equations on £
le > 0 for all e edge

Py = start at a vertex, find the
coordinates of the other vertices
from the graph of P and £
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Polygonal face equations

hed

u3 uz

[ o

For F a 2-dim face of P:

E ue =0 , we unit vector
e

hence

leue =0
>
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Summary on DC(P)

DC(P)
Q 0
Minkowski summands edge-lengths
Q1+ Q2 b1+ €5
Dilation A\Q pY4
Translations Has been fixed

edge directions
complicated Polygonal face eq.
V-description

DC(P) is a ray = P Minkowski indecomposable
DC(P) is simplicial cone = P has unique Minkowski decomposition
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Generalized permutahedra as deformations
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Permutahedron

Example (Permutahedron

)
a(1)
M, = conv : ; o permutation of {1,..., n}
a(n)
321
312 231
132 213
123
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Permutahedron

Example (Permutahedron

)
a(1)
M, = conv : ; o permutation of {1,..., n}
a(n)
321
312 231
132 213
123
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Definition

Generalized permutahedron: deformation of 1,
i.e. P generalized permutatahedron iff edges in directions e; — e;

X1 = X2 Xo = X3
321
312 231
X1 X3
132 213
123
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Deformations of [,

Permutahedron [y Sequence of deformations of Iy
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2-dimensional example

Polygonal face equations:
by—Ly =Ly — by =Lle — L
& £ RE
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Submodular Cone in general
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Submodular Cone

Definition
Submodular cone: deformation cone of the permutahedron I1,

| DC(M,)
Dim (no lineal) | 2" —n—1
# facets (5)2"2
# rays unknown!
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Submodular Cone for I3
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Submodular Cone's faces

Definition
Submodular cone SC,,: deformation cone of the permutahedron 1,

| DC(M,)
Dim (no lineal) | 2" —n—1
# facets (5)2"2
# rays unknown!
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Submodular Cone's faces

Definition
Submodular cone SC,: deformation cone of the permutahedron I1,

Theorem (Faces of DC(P
If Q deformation of P, then DC(Q) is a face of DC(P).

| DC(M,)
Dim (no lineal) | 2" —n—1
# facets (5)2"2
# rays unknown!
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Submodular Cone's faces

Definition
Submodular cone SC,: deformation cone of the permutahedron I1,

Theorem (Faces of DC(P
If Q deformation of P, then DC(Q) is a face of DC(P).

| DC(M,)  DC(Asso,)

Dim (no lineal) | 2" —n—1 (5)
# facets (5)2"2 (5)
# rays unknown! (5)
is simplicial!
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Submodular Cone's faces

Definition
Submodular cone SC,: deformation cone of the permutahedron I1,

Theorem (Faces of DC(P
If Q deformation of P, then DC(Q) is a face of DC(P).

| DC(M,) DC(Asso,) DC(Zg) DC(Ng)

Dim (no lineal) | 2" —n—1 (5) N N
# facets (5)2"2 (3) E E
# rays unknown! (5) X X

is simplicial! T T
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Graphical Zonotopes
G = (V,E) agraph, n= V]|

Definition

Graphical zonotope Z¢ := Z(,J)EE[e,-, e/l

Z; deformation of 1, = DC(Z¢) is a face of DC(I,)

1

N

-

Ap AV A3y

Germain Poullot

4

Ay

\+\+/

A visit of the Submodular Cone 20 /45



Graphical Zonotopes

Theorem (Padrol, Pilaud, P., '23)

Explicit facet-description of DC(Z¢)
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Graphical Zonotopes

Theorem (Padrol, Pilaud, P., '23)
Explicit facet-description of DC(Z¢)

dim DC(Z¢) = # cliques of G
# facets of DC(Z¢) = 3 j)cE ol{k 5 (i,k),(,k)€EY]
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Graphical Zonotopes

Theorem (Padrol, Pilaud, P., '23)

Explicit facet-description of DC(Z¢)

dim DC(Z¢) = # cliques of G
# facets of DC(Z¢) = 3 j)cE ol{k 5 (i,k),(,k)€EY]

DC(Z¢) simplicial iff G without triangle

NB: Recover facet-description of DC(IM,)
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Graphical Zonotopes

Theorem (Padrol, Pilaud, P., '23)

Explicit facet-description of DC(Z¢)

dim DC(Z¢) = # cliques of G
# facets of DC(Z¢) = 3 j)cE ol{k 5 (i,k),(,k)€EY]

DC(Z¢) simplicial iff G without triangle

NB: Recover facet-description of DC(IM,)

Theorem (P., '24)
If G is Ky-free, then all rays of DC(Z¢) are 1- and 2-dimensional.
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Graphical Zonotopes
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Nestohedra

Definition

Building set B C 2l with: X1, € B,XiNXo £ 0= X1 UXo € B

Definition

Nestohedron Ng := 3" xcg Ax where Ax = conv{e; ; i € X}

Ng deformation of [, = DC(Npg) is a face of DC(IM,)

(o1.49)

N

ALY Uit

Ar A13q JAVEY: A1234 N
B

3
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Elementary blocks X € (B) iff X is not a union
Maximal block u(X) := max{Y € B; Y C X}

Theorem (Padrol, Pilaud, P., '23)

Explicit facet description of DC(Npg)
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Elementary blocks X € (B) iff X is not a union
Maximal block u(X) := max{Y € B; Y C X}

Theorem (Padrol, Pilaud, P., '23)

Explicit facet description of DC(Npg)

dimDC(Ng) = |B| — # singletons
# facets of DC(Ng) = [(B)| + Lxes.<(s) ("5
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Elementary blocks X € ¢(B) iff X is not a union
Maximal block u(X) := max{Y € B; Y C X}

Theorem (Padrol, Pilaud, P., '23)

Explicit facet description of DC(Npg)

dimDC(Ng) = |B| — # singletons
# facets of DC(Ng) = [(B)| + Lxes.<(s) ("5

DC(Ng) simplicial iff B has no non-elementary block with 3
maximal subblocks

NB: Recover facet-description of DC(IM,)
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Nestohedra

N v £
4

\ JAVEY!
Alk
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Ongoing work - Hypergraphic polytopes

Definition

Hypergraphic polytope Py := > xcy Ax  with H C 2lnl

TN

A13

M4

)
/

AP
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Ongoing work - Quotientopes

Definition

Quotientopes: Minkowski sum of shard polytopes

Y
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Submodular cone n = 4 (and n=5)
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Recall: dim = 11, nbr facets = 80
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Recall: dim = 11, nbr facets = 80

Draw all generalized permutahedra 7 (ask computer)
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Recall: dim = 11, nbr facets = 80

Draw all generalized permutahedra 7 (ask computer)

22 107 faces (Please do not draw...)
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Recall: dim = 11, nbr facets = 80

Draw all generalized permutahedra 7 (ask computer)

22 107 faces (Please do not draw...)

= quotient by symmetries
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Symmetries of the braid fan

Braid symmetries: permutation of coordinates + central symmetry

Assos \

Az

~ >
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Recall: dim = 11, nbr facets = 80

Draw all generalized permutahedra 7 (ask computer)

22 107 faces

= quotient by symmetries
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Recall: dim = 11, nbr facets = 80

Draw all generalized permutahedra 7 (ask computer)

22 107 faces

= quotient by symmetries

703 “faces”
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Reduced face lattice of SCy4

dj{1 2 3 4 5 6 7 8 9 10 11 | total
fg |7 25 64 127 174 155 97 39 12 2 1 703
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Reduced f-vector of SC,,

Reduced SC,, f-vector:

n=3
dim S(Cg, =4
(2,2,1,1)

n=4,dim SC4 =11
(7,25,64,127,174,
155,97,39,12,2,1)
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Reduced f-vector of SC,,

Reduced SC,, f-vector:

n=3

dim S(Cg, =4
(2,2,1,1)

n=4,dim SC4 =11
(7,25,64,127,174,
155,97,39,12,2,1)

Thanks to Winfried Bruns for
helping with computations!
Database for dim 1-4 & 19-26

Germain Poullot

n=>5, dim SCs = 26

*672

*24 026

*373 433

*3 355 348
19739 627
81728494
249 483675
579 755 845
1048953035
1501 555 944
1719688853
1587510812
1186 372740
719012097
353190577
140 265 886
44 831 594
11464 559

*2 326 596

*372 031

*46 330

*4 572

*355

*30

*2

*1
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Graphical zonotopes & Nestohedra are sparse

With: Graphical Zonotopes
10 polytopes
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Graphical zonotopes & Nestohedra are sparse

With: Graphical Zonotopes & Nestohedra
10 + 46 polytopes
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Graphical zonotopes & Nestohedra are sparse

1 =1 300 20008¢ et B

T eeet Jesssssest X I R

71N CeNt DSSSSSsssseest Meseest | M X Deset

@1 X 1808t I 11 2esessst Ix

@0 111 1000¢ 3 J0000SSSS( JOSSOOO000000000000000000000000000
€ X 20ue0e0esessssssse

With: Graphical Zonotopes & Nestohedra + facets
147 polytopes in total
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Everything is quite negligible...

With: Graphical Zono & Nestohedra C Hypergraphic Polytopes,
+ Shard Polytopes, Quotientopes,

+ Matroid Polytopes

= 112 polytope (only...)
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What about the rays of SC4 7

Then 665 of dim 4,
> 126 629 of dim

SR
Sk

o
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Strawberry & Persimmon

Example of GP: \

Minkowski indecomposable v/ /
Matroid Polytopes X

Strawberry

LT
S

Persimmon
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Strawberry & Persimmon

Example of GP: \

Minkowski indecomposable v/ /
Matroid Polytopes X
Hypergraphic polytopes X Strawberry

Shard Polytopes X
L

Persimmon
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Strawberry & Persimmon

Example of GP: \

Minkowski indecomposable v/ /
Matroid Polytopes X
Hypergraphic polytopes X Strawberry

Shard Polytopes X

Persimmon: \
Polypositroid X '
Removahedron X ‘/

Persimmon
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How many rays of SC,?

Ray of SC,, = indecomposable generalized permutahedron

Theorem (Nguyen, '78)

The rays of SC,, which uses only 0/1-coordinates are known.
There are: s
22n7§ log n+0(1)

#rays of SC, >
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How many rays of SC,?

Ray of SC,, = indecomposable generalized permutahedron

Theorem (Nguyen, '78)

The rays of SC,, which uses only 0/1-coordinates are known.

There are:
on— % log n+0(1)

#rays of SC, > 2

Theorem (consequence of Rosenmiiller, Weidner, '73)

There exists some rays which are not on 0/1-coordinates.
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How many rays of SC,?

Theorem (Padrol, P., '25% — come to FPSAC 2025!)

Truncate vertices of Zk, ., you can get 2 L”%IJ new rays of SC,.
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Fun fact 1: Smilanski's conjecture

Smilanski's conjecture, '87

If P is indecomposable with dim P = 4, then fy < 2fy_1 — 4.

FALSE!
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Fun fact 1: Smilanski's conjecture

Smilanski's conjecture, '87

If P is indecomposable with dim P = 4, then fy < 2fy_1 — 4.

FALSE!

Observation

There are 84 counter-examples in the database.
There exists an indecomposable GP with f-vector:

(66,153,113, 26)
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Fun fact 2: Edge lengths

Equilateral: all edges have same length

Observation
All Minkowski indecomposable GP in SCy4 are equilateral
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Fun fact 2: Edge lengths

Equilateral: all edges have same length

Observation
All Minkowski indecomposable GP in SCy4 are equilateral

Observation

Exists Minkowski indecomposable GP in SCs not equilateral

For n=>5

1 2 3 4 5 6
41 292 250 73 12 4

# edge-length classes
# Minkowski indec GP

Usefull for proving Minkowski indecomposabilitiy
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Fun fact 3: Combinatorial equivalence

Two GP can be
combinatorially eq. ¢/
eq. up to symmetries X

Forn=4
Up to symmetries: 703
Up to combinatorial eq.: 532
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Fun fact 3: Combinatorial equivalence

Two GP can be
combinatorially eq. ¢/
eq. up to symmetries X

Forn=4
Up to symmetries: 703
Up to combinatorial eq.: 532

Minkowski indecomposable GP + combinatorially eq.
= eq. up to symmetries

True up to n =5 (i.e. 672 examples) and for 126 629 example of n = 6
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Fun fact 4: Dimensions of GP

Observation
Exists some GP : dim P=n—1but P € 11,
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Fun fact 4: Dimensions of GP

Observation
Exists some GP : dim P=n—1but P € 11,

P is Minkowski indecomposable + dim P =n—1
= PJI,

True up to n =5 (i.e. 672 examples) and for 126 629 example of n = 6
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Fun fact 5: Non hamiltonian GP

Exists GP graph with no hamiltonian path (1 in SCy)
Exists GP graph with no hamiltonian cycle (9 in SCy)

Observation
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Fun fact 6: GP with lattice graph

Observation

Exists GP not quotientopes? but its oriented graph is a lattice
(339 in SCq4, 27 are simple)

“i.e. not combinatorially eq. to a quotientope
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Thank youl!




Tools: submodular dependancies

Notations: Sx = S U {x}, (fx)xc[n canonical basis of R2"

Definition

Submodular vector n(S,u,v) = fs,, — fsy, — fs, + fs
for u,v € S C [n]

1234

/NN
123 134 234 124

W

12723 13 34 24 1

W %_1
\\ // \ /
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Tools: submodular dependancies

Notations: Sx = S U {x}, (fx)xc[n canonical basis of R2"

Definition

Submodular vector n(S,u,v) = fs,, — fsy, — fs, + fs
for u,v € S C [n]

1234

/NN
123 134 234 124 1

W /N
12723 13 34 24 -1 -1

W N%
\\ //
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Tools: submodular dependancies

Lemma (Submodular normal)

n(S, u,v) are the facet’s normals of DC(I,)

Lemma (Cubic relation)

u,v,x ¢S C[n]

n(Suvx, u, v) + n(Sux, u, x) = n(Suv, u, v) + n(Suvx, u, x)

il

NB: Cubic relations generates all relations of submodular vectors
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Tools: submodular dependancies

Lemma (Submodular normal)

n(S, u,v) are the facet’s normals of DC(I,)

Lemma (Cubic relation)

u,v,x ¢S C[n]

n(Suvx, u, v) + n(Sux, u, x) = n(Suv, u, v) + n(Suvx, u, x)

pii]

NB: Cubic relations generates all relations of submodular vectors
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Tools: submodular dependancies

Lemma (Submodular normal)

n(S, u,v) are the facet’s normals of DC(I,)

Lemma (Cubic relation)

u,v,x ¢S C[n]

n(Suvx, u, v) + n(Sux, u, x) = n(Suv, u, v) + n(Suvx, u, x)

)l

NB: Cubic relations generates all relations of submodular vectors
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Tools: submodular dependancies

Lemma (Submodular normal)

n(S, u,v) are the facet’s normals of DC(I,)

Lemma (Cubic relation)
wv,x &5 C [

n(Suvx, u, v) + n(Sux, u, x) = n(Suv, u, v) + n(Suvx, u, x)

Svx Suvx Svx Suvx
/ / / /
Sx *“ Sux Sx # Sux
Sv *)» Suv Sv *)‘ Suv
/S / / /
S Su S Su

NB: Cubic relations generates all relations of submodular vectors
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Tools: Shepard—McMullen indecomposability criterions

If every two vertices of P are joined by a strong chain of
indecomposable faces, then P is indecomposable.

Theorem (McMullen, '87)

If a (strongly connected family of) indecomposable face(s) touches
every facets, then P is indecomposable.

V.

Improvement of McMullen's criterion:

Theorem (Loho, Padrol, P., '24+)

If a (strongly connected family of) indecomposable face(s) touches
every facets except F, and F has a vertex with two neighbors
outside of F, then P is indecomposable.
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Exercises

Multiple choice questions
(sometimes several answer possible)

A sum of 2 co-planar 3 edges 4 edges 5 edges 6 edges
triangles can have
Npiq = —— of Np,Ng union intersection common product
refinement
Edge directions of GP € {e;},- {e,- + ej},-,j {e,- — ej},-,j {e,- + ej},-,j
Z: has no hexagonal a tree Ks-free Ky-free complete
face iff G is
- form a basis of Vect(SCp) | {Ax}xc[n  nestohedra shard matroid
polytopes polytopes
dimSC3 = 3 4 5 11
Group of symmetries of SCp: Free, Sh Sn X 7o Sn X Zin
# 3-dim indecomposable GP: 3 5 7 37
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Exercises

1. Show that Vert(P + Q) C {u+ v ; u € Vert(P), v € Vert(Q)}.
Find an example with strict inclusion. Prove that Npq is the
common refinement of Np and Ng.

2. Find all the ways to write the 2-dimensional permutahedron as a
Minkowski sum of indecomposable polytopes.

3. Prove that hpyq = hp + hq and £pq = £p + £q. What are
hp.¢ and €p 7

4. Prove that a triangle is Minkowski indecomposable. Deduce
that all simplicial polytopes are Minkowski indecompsable.
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Exercises

5. Take vectors s,s’,r1,...,rqy_1 such that

C = cone(s, r1,...,rqy—1) and C' = cone(s’,rq,...,rq_1) are
simplicial cones which intersect on their proper face

CNC = cone(ry,...,rqg—1). Show that there exist as, g > 0
and o, € R such that:

ass + ags + Z orri =0

1

6. Compute (and draw) the deformation cone of a parallelogram
(use the edge-lengths point of view). What about a parallelopiped?
Show that there is a unique way to write a parallelopiped P as a
sum of Minkowski indecomposable polytopes.

7. Show that SC, has (5)2"~2 facets. Give bounds on its number
of rays.
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Exercises

8. Show that graphical zonotopes are generalized permutahedra.
Show that nestohedra are generalized permutahedra. Show that
matroid polytopes are generalized permutahedra. Which are
indecomposable?

9. If G is triangle-free, then DC(Z¢) is simplicial (see lecture).
Each face of DC(Z¢) is associated to a polytope: which polytope?

10. The weighted graphical zonotope of a graph G = (V, E) and
weight (on edges) w: E — R} is Zg, := > jyeew(i,j)[ei: )]
Show that: {zonotopes} N {generalized permutahedra} =
{weighted graphical zonotopes}. Show that the cone of weighted
graphical zonotopes is a section (i.e. intersection with a linear
sub-space) of the submodular cone, such that the rays of this
section are rays of SC,. What is the dimension of this section?

11. Prove the cubic relations hold. Show that cubic relations
generates all linear relations between submodular vectors.
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