Deformed permutahedra Let's visit the submodular cone together

Germain Poullot

27 Febuary 2025

- Deformations (a.k.a. Minkowski summands)
 - Minkowski decomposition
 - Cone of deformations
- Generalized permutahedra as deformations
 - Combinatorics of the permutahedron
 - Submodular functions
- Submodular Cone in general
 - Known facts about \mathbb{SC}_n
 - Ongoing work
- 4 Submodular cone n = 4 (and n = 5)
 - ullet Drawing and quotienting \mathbb{SC}_4
 - About rays of \mathbb{SC}_n
 - Fun facts!

Deformations (a.k.a. Minkowski summands)

Definition

P, Q polytopes. Minkowski sum:

$$P + Q = \{ \boldsymbol{p} + \boldsymbol{q} \ ; \ \boldsymbol{p} \in P, \ \boldsymbol{q} \in Q \}$$

N.B. $Vert(P + Q) \subseteq Vert(P) + Vert(Q)$

Definition

Q is a *Minkowski summand*, a.k.a. *deformation*, of P when there exists R and $\lambda > 0$ with:

$$\lambda \mathsf{P} = \mathsf{Q} + \mathsf{R}$$

Definition

Q is a *Minkowski summand*, a.k.a. *deformation*, of P when there exists R and $\lambda > 0$ with:

$$\lambda P = Q + R$$

 $\begin{array}{l} \textit{Deformation cone} \colon \mathbb{DC}(P) = \big\{Q \; ; \; Q \; \text{is a deformation of P} \big\} \\ \textit{Minkowski indecomposable} \colon \text{deformations of P are dilations of P} \\ \end{array}$

Definition

Q is a *Minkowski summand*, a.k.a. *deformation*, of P when there exists R and $\lambda > 0$ with:

$$\lambda \mathsf{P} = \mathsf{Q} + \mathsf{R}$$

 $\begin{array}{l} \textit{Deformation cone} \colon \mathbb{DC}(\mathsf{P}) = \big\{ \mathsf{Q} \; ; \; \mathsf{Q} \; \text{is a deformation of P} \big\} \\ \textit{Minkowski indecomposable} \colon \text{deformations of P are dilations of P} \\ \end{array}$

What is the best way to write P as a Minkowski sum?

- With the fewest number of (indecomposable) summands?
- With the (indecomposable) summands of smallest dimension ?
- Respecting some symmetries ?
- . . .

Definition

Q is a *Minkowski summand*, a.k.a. *deformation*, of P when there exists R and $\lambda > 0$ with:

$$\lambda \mathsf{P} = \mathsf{Q} + \mathsf{R}$$

 $\begin{array}{l} \textit{Deformation cone} \colon \mathbb{DC}(\mathsf{P}) = \big\{ \mathsf{Q} \; ; \; \mathsf{Q} \; \text{is a deformation of P} \big\} \\ \textit{Minkowski indecomposable} \colon \text{deformations of P are dilations of P} \\ \end{array}$

What is the best way to write P as a Minkowski sum?

- With the fewest number of (indecomposable) summands?
- With the (indecomposable) summands of smallest dimension ?
- Respecting some symmetries ?
- . . .
- \implies What is the structure of $\mathbb{DC}(P)$?

Observation

Observation

Observation

Observation

Deformations of 3-dim permutahedron

Permutahedron Π_4

Sequence of deformations of Π_4

Theorem

 $Q \ \textit{deformation of} \ P \ \Leftrightarrow \ \textit{same edge-directions, but different lengths}$

Definition

 $\textit{Edge-length deformation cone}: \ \mathbb{DC}(P) = \{Q \ ; \ Q \ same \ edge-dir \ P\}$

$\mathsf{Theorem}$

 $Q \ \textit{deformation of} \ P \ \Leftrightarrow \ \textit{same edge-directions, but different lengths}$

Definition

 $\textit{Edge-length deformation cone} : \ \mathbb{DC}(P) = \{Q \ ; \ Q \ same \ edge-dir \ P\}$

Parametrization:

$$oldsymbol{\ell} = ig(\ell_{oldsymbol{e}}ig)_{oldsymbol{e} \ \mathsf{edge}}$$

$\mathsf{Theorem}$

 $Q \ \textit{deformation of} \ P \ \Leftrightarrow \ \textit{same edge-directions, but different lengths}$

Definition

Edge-length deformation cone: $\mathbb{DC}(P) = \{Q \text{ ; } Q \text{ same edge-dir } P\}$

Parametrization:

$$oldsymbol{\ell} = ig(\ell_{oldsymbol{e}}ig)_{oldsymbol{e} \ \mathsf{edge}}$$

$\mathsf{Theorem}$

 $Q \ \textit{deformation of} \ P \ \Leftrightarrow \ \textit{same edge-directions, but different lengths}$

Definition

Edge-length deformation cone: $\mathbb{DC}(P) = \{Q \text{ ; } Q \text{ same edge-dir } P\}$

Parametrization:

$$oldsymbol{\ell} = \left(\ell_{oldsymbol{e}}
ight)_{oldsymbol{e} \; \mathsf{edge}}$$

Theorem

 $Q \ \textit{deformation of} \ P \ \Leftrightarrow \ \textit{same edge-directions, but different lengths}$

Definition

Edge-length deformation cone: $\mathbb{DC}(P) = \{Q \text{ ; } Q \text{ same edge-dir } P\}$

Parametrization:

$$oldsymbol{\ell} = \left(\ell_{oldsymbol{e}}
ight)_{oldsymbol{e} \; \mathsf{edge}}$$

Theorem

 $Q \ \textit{deformation of} \ P \ \Leftrightarrow \ \textit{same edge-directions, but different lengths}$

Definition

Edge-length deformation cone: $\mathbb{DC}(P) = \{Q \text{ ; } Q \text{ same edge-dir } P\}$

Parametrization:

edge-length vector.

$$oldsymbol{\ell} = ig(\ell_{oldsymbol{e}}ig)_{oldsymbol{e} \ \mathsf{edge}}$$

Polygonal face equations:

linear equations on $\boldsymbol{\ell}$

$$\ell_{m{e}} \geq$$
 0 for all $m{e}$ edge

$\mathsf{Theorem}$

 $Q \ \textit{deformation of} \ P \ \Leftrightarrow \ \textit{same edge-directions, but different lengths}$

Definition

Edge-length deformation cone: $\mathbb{DC}(P) = \{Q ; Q \text{ same edge-dir } P\}$

Parametrization:

edge-length vector.

$$oldsymbol{\ell} = ig(\ell_{oldsymbol{e}}ig)_{oldsymbol{e} \ \mathsf{edge}}$$

Polygonal face equations:

linear equations on $\boldsymbol{\ell}$

$$\ell_{m{e}} \geq$$
 0 for all $m{e}$ edge

 $P_{\ell}=$ start at a vertex, find the coordinates of the other vertices from the graph of P and ℓ

Polygonal face equations

For F a 2-dim face of P:

$$\sum_{m{e}} m{u_e} = m{0}$$
 , $m{u_e}$ unit vector

hence

$$\sum \ell_e u_e = 0$$

Summary on $\mathbb{DC}(P)$

 $\mathbb{DC}(P)$ is a ray = P Minkowski indecomposable $\mathbb{DC}(P)$ is simplicial cone = P has **unique** Minkowski decomposition

Permutahedron

Example (Permutahedron)

$$\Pi_n = \operatorname{conv}\left\{egin{pmatrix} \sigma(1) \\ \vdots \\ \sigma(n) \end{pmatrix} \; ; \; \sigma \; \operatorname{permutation of} \; \{1,\ldots,n\} \right\}$$

Permutahedron

Example (Permutahedron)

$$\Pi_n = \operatorname{conv} \left\{ egin{pmatrix} \sigma(1) \\ \vdots \\ \sigma(n) \end{pmatrix} \; ; \; \sigma \; \operatorname{permutation of} \; \{1,\ldots,n\} \right\}$$

Braid fan

Definition

Generalized permutahedron: deformation of Π_n

i.e. P generalized permutatahedron iff edges in directions $oldsymbol{e}_i - oldsymbol{e}_j$

i.e. P generalized permutahedron iff \mathcal{N}_{P} coarsens braid fan

Deformations of Π_4

Permutahedron Π_4

Sequence of deformations of Π_4

2-dimensional example

Wall-crossing inequalities:

$$h_A + h_B \ge h_{C'}$$

 $h_B + h_C \ge h_{A'}$
 $h_C + h_A \ge h_{B'}$
& 3 others ineq.

Polygonal face equations:

$$\begin{array}{l} \ell_a - \ell_{a'} = \ell_b - \ell_{b'} = \ell_c - \ell_{c'} \\ \& \ \boldsymbol{\ell} \in \mathbb{R}_+^6 \end{array}$$

Submodular Cone in general

Submodular Cone

Definition

Submodular cone: deformation cone of the permutahedron Π_n

	$\mathbb{DC}(\Pi_n)$
Dim (no lineal)	$2^n - n - 1$
# facets	$\binom{n}{2} 2^{n-2}$
# rays	unknown!

Submodular Cone for Π_3

Definition

Submodular cone \mathbb{SC}_n : deformation cone of the permutahedron Π_n

	$\mathbb{DC}(\Pi_n)$
Dim (no lineal)	2^n-n-1
# facets	$\binom{n}{2} 2^{n-2}$
# rays	unknown!

Definition

Submodular cone \mathbb{SC}_n : deformation cone of the permutahedron Π_n

Theorem (Faces of $\mathbb{DC}(P)$)

If Q deformation of P, then $\mathbb{DC}(Q)$ is a face of $\mathbb{DC}(P)$.

	$\mathbb{DC}(\Pi_n)$
Dim (no lineal)	
# facets	$\binom{n}{2} 2^{n-2}$
# rays	unknown!

Definition

Submodular cone \mathbb{SC}_n : deformation cone of the permutahedron Π_n

Theorem (Faces of $\mathbb{DC}(P)$)

If Q deformation of P, then $\mathbb{DC}(Q)$ is a face of $\mathbb{DC}(P)$.

	$\mathbb{DC}(\Pi_n)$	$\mathbb{DC}(Asso_n)$	
Dim (no lineal)	$2^{n}-n-1$	(n)	
# facets	$\binom{n}{2} 2^{n-2}$	$\binom{n}{2}$	
# rays	unknown!	$\binom{\overline{n}}{2}$	
		is simplicial!	

Definition

Submodular cone \mathbb{SC}_n : deformation cone of the permutahedron Π_n

Theorem (Faces of $\mathbb{DC}(P)$)

If Q deformation of P, then $\mathbb{DC}(Q)$ is a face of $\mathbb{DC}(P)$.

	$\mathbb{DC}(\Pi_n)$	$\mathbb{DC}(Asso_n)$	$\mathbb{DC}(Z_G)$	$\mathbb{DC}(N_B)$
Dim (no lineal)	$2^{n}-n-1$	(n/2)	N	N
# facets	$\binom{n}{2} 2^{n-2}$	$\binom{\overline{n}}{2}$	Е	Е
# rays	unknown!	$\binom{\overline{n}}{2}$	Χ	Χ
		is simplicial!	Т	Т

$$G = (V, E)$$
 a graph, $n = |V|$

Definition

Graphical zonotope
$$Z_G := \sum_{(i,j) \in E} [e_i, e_j]$$

 Z_{G} deformation of $\mathsf{\Pi}_n \implies \mathbb{DC}(\mathsf{Z}_{\mathsf{G}})$ is a face of $\mathbb{DC}(\mathsf{\Pi}_n)$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet-description of $\mathbb{DC}(Z_G)$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet-description of $\mathbb{DC}(Z_G)$

Corollary

$$dim \ \mathbb{DC}(\mathsf{Z}_G) = \# \ cliques \ of \ G$$

facets of
$$\mathbb{DC}(Z_G) = \sum_{(i,j) \in E} 2^{|\{k \; ; \; (i,k),(j,k) \in E\}|}$$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet-description of $\mathbb{DC}(Z_G)$

Corollary

$$dim \ \mathbb{DC}(\mathsf{Z}_G) = \# \ cliques \ of \ G$$

facets of
$$\mathbb{DC}(\mathsf{Z}_G) = \sum_{(i,j) \in E} 2^{|\{k \; ; \; (i,k),(j,k) \in E\}|}$$

Corollary

 $\mathbb{DC}(\mathsf{Z}_{\mathsf{G}})$ simplicial iff G without triangle

NB: Recover facet-description of $\mathbb{DC}(\Pi_n)$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet-description of $\mathbb{DC}(Z_G)$

Corollary

 $dim \ \mathbb{DC}(\mathsf{Z}_G) = \# \ cliques \ of \ G$

facets of $\mathbb{DC}(\mathsf{Z}_G) = \sum_{(i,j)\in E} 2^{|\{k \; ; \; (i,k),(j,k)\in E\}|}$

Corollary

 $\mathbb{DC}(\mathsf{Z}_{\mathsf{G}})$ simplicial iff G without triangle

NB: Recover facet-description of $\mathbb{DC}(\Pi_n)$

Theorem (P., '24)

If G is K_4 -free, then all rays of $\mathbb{DC}(Z_G)$ are 1- and 2-dimensional.

Definition

Building set $B \subseteq 2^{[n]}$ with: $X_{1,2} \in B, X_1 \cap X_2 \neq \emptyset \Rightarrow X_1 \cup X_2 \in B$

Definition

Nestohedron $N_B := \sum_{X \in B} \Delta_X$ where $\Delta_X = \text{conv}\{e_i \; ; \; i \in X\}$

 N_B deformation of $\Pi_n \implies \mathbb{DC}(N_B)$ is a face of $\mathbb{DC}(\Pi_n)$

Elementary blocks $X \in \varepsilon(B)$ iff X is not a union Maximal block $\mu(X) := \max\{Y \in B ; Y \subsetneq X\}$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet description of $\mathbb{DC}(N_B)$

Elementary blocks $X \in \varepsilon(B)$ iff X is not a union Maximal block $\mu(X) := \max\{Y \in B \; ; \; Y \subsetneq X\}$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet description of $\mathbb{DC}(N_B)$

Corollary

$$\dim \mathbb{DC}(\mathsf{N}_B) = |B| - \#$$
 singletons

facets of
$$\mathbb{DC}(N_B) = |\varepsilon(B)| + \sum_{X \in B \setminus \varepsilon(B)} \binom{|\mu(X)|}{2}$$

Elementary blocks $X \in \varepsilon(B)$ iff X is not a union Maximal block $\mu(X) := \max\{Y \in B ; Y \subsetneq X\}$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet description of $\mathbb{DC}(N_B)$

Corollary

$$\begin{aligned} &\dim \mathbb{DC}(\mathsf{N}_B) = |B| - \# \textit{ singletons} \\ &\# \textit{ facets of } \mathbb{DC}(\mathsf{N}_B) = |\varepsilon(B)| + \sum_{X \in B \setminus \varepsilon(B)} \binom{|\mu(X)|}{2} \end{aligned}$$

Corollary

 $\mathbb{DC}(N_B)$ simplicial iff B has no non-elementary block with 3 maximal subblocks

NB: Recover facet-description of $\mathbb{DC}(\Pi_n)$

Ongoing work - Hypergraphic polytopes

Definition

Hypergraphic polytope $P_H := \sum_{X \in H} \Delta_X$ with $H \subseteq 2^{[n]}$

Ongoing work - Quotientopes

Definition

Quotientopes: Minkowski sum of shard polytopes

Submodular cone
$$n = 4$$
 (and $n = 5$)

 ${\sf Recall:} \ {\sf dim} = 11, \ {\sf nbr} \ {\sf facets} = 80$

Recall: dim = 11, nbr facets = 80

Draw all generalized permutahedra ? (ask computer)

```
Recall: dim = 11, nbr facets = 80   
Draw all generalized permutahedra ? (ask computer)   
22\ 107\ \text{faces} \qquad \qquad \text{(Please do not draw...)}
```

```
Recall: dim = 11, nbr facets = 80  
Draw all generalized permutahedra ? (ask computer)  
22\ 107\ \text{faces} \qquad \qquad \text{(Please do not draw...)} \Longrightarrow quotient by symmetries
```

Symmetries of the braid fan

 ${\it Braid\ symmetries}:\ permutation\ of\ coordinates\ +\ central\ symmetry$

Recall: dim = 11, nbr facets = 80

Draw all generalized permutahedra ? (ask computer)

 $22\ 107\ \text{faces}$

 \Longrightarrow quotient by symmetries

Recall: dim = 11, nbr facets = 80

Draw all generalized permutahedra? (ask computer)

22 107 faces

 \Longrightarrow quotient by symmetries

703 "faces"

Reduced face lattice of \mathbb{SC}_4

Reduced *f*-vector of \mathbb{SC}_n

Reduced \mathbb{SC}_n *f*-vector:

```
n = 3

dim \mathbb{SC}_3 = 4

(2, 2, 1, 1)

n = 4, dim \mathbb{SC}_4 = 11

(7, 25, 64, 127, 174, 155, 97, 39, 12, 2, 1)
```

Reduced f-vector of \mathbb{SC}_n

Reduced \mathbb{SC}_n *f*-vector:

$$n = 3$$

dim $\mathbb{SC}_3 = 4$
 $(2, 2, 1, 1)$
 $n = 4$, dim $\mathbb{SC}_4 = 11$
 $(7, 25, 64, 127, 174, 155, 97, 39, 12, 2, 1)$

Thanks to Winfried Bruns for helping with computations!

Database for dim 1-4 & 19-26

```
n = 5, dim \mathbb{SC}_5 = 26
*672
*24 026
*373 433
*3 355 348
 19 739 627
 81 728 494
 249 483 675
 579 755 845
 1 048 953 035
 1 501 555 944
 1 719 688 853
 1 587 510 812
 1 186 372 740
 719 012 097
 353 190 577
 140 265 886
 44 831 594
 11 464 559
*2 326 596
*372 031
*46 330
*4 572
*355
*30
*2
*1
```

Graphical zonotopes & Nestohedra are sparse

With: Graphical Zonotopes 10 polytopes

Graphical zonotopes & Nestohedra are sparse

With: Graphical Zonotopes & Nestohedra 10 + 46 polytopes

Graphical zonotopes & Nestohedra are sparse

With: Graphical Zonotopes & Nestohedra + facets 147 polytopes in total

Everything is quite negligible...

With: Graphical Zono & Nestohedra \subsetneq Hypergraphic Polytopes,

- + Shard Polytopes, Quotientopes,
- + Matroid Polytopes
- = 112 polytope (only...)

What about the rays of \mathbb{SC}_4 ?

Strawberry & Persimmon

Example of GP:

Minkowski indecomposable 🗸

Matroid Polytopes X

Persimmon

Strawberry & Persimmon

Example of GP:

Minkowski indecomposable 🗸

Matroid Polytopes X

Hypergraphic polytopes X Shard Polytopes X

Strawberry

Persimmon

Strawberry & Persimmon

Example of GP:

Minkowski indecomposable 🗸

Matroid Polytopes X

Hypergraphic polytopes 🗡

Shard Polytopes X

Persimmon:

Polypositroid X

Removahedron X

Strawberry

Persimmon

How many rays of \mathbb{SC}_n ?

Ray of SC_n = indecomposable generalized permutahedron

Theorem (Nguyen, '78)

The rays of \mathbb{SC}_n which uses only 0/1-coordinates are known. There are:

$$\# rays \ of \ \mathbb{SC}_n \ \geq \ 2^{2^{n-\frac{3}{2}\log n + O(1)}}$$

How many rays of \mathbb{SC}_n ?

Ray of SC_n = indecomposable generalized permutahedron

Theorem (Nguyen, '78)

The rays of \mathbb{SC}_n which uses only 0/1-coordinates are known. There are:

#rays of
$$\mathbb{SC}_n \geq 2^{2^{n-\frac{3}{2}\log n + O(1)}}$$

Theorem (consequence of Rosenmüller, Weidner, '73)

There exists some rays which are not on 0/1-coordinates.

How many rays of \mathbb{SC}_n ?

Theorem (Padrol, P., '25 $^+$ \rightarrow come to FPSAC 2025!)

Truncate vertices of $Z_{K_{k,m}}$, you can get $2 \left\lfloor \frac{n-1}{2} \right\rfloor$ new rays of \mathbb{SC}_n .

Fun fact 1: Smilanski's conjecture

Smilanski's conjecture, '87

If P is indecomposable with dim P = 4, then $f_0 < 2f_{d-1} - 4$.

FALSE!

Fun fact 1: Smilanski's conjecture

Smilanski's conjecture, '87

If P is indecomposable with dim P = 4, then $f_0 < 2f_{d-1} - 4$.

FALSE!

Observation

There are 84 counter-examples in the database.

There exists an indecomposable GP with *f*-vector:

(66, 153, 113, **26**)

Fun fact 2: Edge lengths

Equilateral: all edges have same length

Observation

All Minkowski indecomposable GP in \mathbb{SC}_4 are equilateral

Fun fact 2: Edge lengths

Equilateral: all edges have same length

Observation

All Minkowski indecomposable GP in \mathbb{SC}_4 are equilateral

Observation

Exists Minkowski indecomposable GP in \mathbb{SC}_5 **not** equilateral

For
$$n = 5$$

```
\# edge-length classes \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \# Minkowski indec GP \begin{vmatrix} 41 & 292 & 250 & 73 & 12 & 4 \end{vmatrix}
```

Usefull for proving Minkowski indecomposabilitiy

Fun fact 3: Combinatorial equivalence

Two GP can be combinatorially eq. < eq. up to symmetries X For n = 4Up to symmetries: 703 Up to combinatorial eq.: 532

Fun fact 3: Combinatorial equivalence

Two GP can be combinatorially eq. ✓ eq. up to symmetries ✗

For n = 4

Up to symmetries: 703

Up to combinatorial eq.: 532

Conjecture

Minkowski indecomposable $\mathsf{GP} + \mathsf{combinatorially}$ eq.

 \Rightarrow eq. up to symmetries

True up to n = 5 (i.e. 672 examples) and for 126 629 example of n = 6

Fun fact 4: Dimensions of GP

Observation

Exists some GP : dim P = n - 1 but $P \not \supseteq \Pi_n$

Fun fact 4: Dimensions of GP

Observation

Exists some GP : dim P = n - 1 but $P \not \subseteq \Pi_n$

Conjecture

P is Minkowski indecomposable $+ \dim P = n-1$

 $\Rightarrow P \trianglelefteq \Pi_n$

True up to n = 5 (i.e. 672 examples) and for 126 629 example of n = 6

Fun fact 5: Non hamiltonian GP

Observation

Exists GP graph with no hamiltonian path $(1 \text{ in } \mathbb{SC}_4)$ Exists GP graph with no hamiltonian cycle $(9 \text{ in } \mathbb{SC}_4)$

Fun fact 6: GP with lattice graph

Observation

Exists GP not quotientopes^a but its oriented graph is a lattice (339 in SC_4 , 27 are simple)

^ai.e. not combinatorially eq. to a quotientope

Thank you!

Notations: $Sx = S \cup \{x\}$, $(f_X)_{X \subseteq [n]}$ canonical basis of $\mathbb{R}^{2^{[n]}}$

Definiti<u>on</u>

Submodular vector $\mathbf{n}(S, u, v) = \mathbf{f}_{Suv} - \mathbf{f}_{Su} - \mathbf{f}_{Sv} + \mathbf{f}_{S}$ for $u, v \in S \subseteq [n]$

Notations: $Sx = S \cup \{x\}$, $(f_X)_{X \subseteq [n]}$ canonical basis of $\mathbb{R}^{2^{[n]}}$

Definition

Submodular vector $\mathbf{n}(S, u, v) = \mathbf{f}_{Suv} - \mathbf{f}_{Su} - \mathbf{f}_{Sv} + \mathbf{f}_{S}$ for $u, v \in S \subseteq [n]$

Lemma (Submodular normal)

 $\mathbf{n}(S, u, v)$ are the facet's normals of $\mathbb{DC}(\Pi_n)$

Lemma (Cubic relation)

$$u, v, x \notin S \subseteq [n]$$

$$n(Suvx, u, v) + n(Sux, u, x) = n(Suv, u, v) + n(Suvx, u, x)$$

Lemma (Submodular normal)

 $\mathbf{n}(S, u, v)$ are the facet's normals of $\mathbb{DC}(\Pi_n)$

Lemma (Cubic relation)

$$u, v, x \notin S \subseteq [n]$$

$$n(Suvx, u, v) + n(Sux, u, x) = n(Suv, u, v) + n(Suvx, u, x)$$

Lemma (Submodular normal)

 $\mathbf{n}(S, u, v)$ are the facet's normals of $\mathbb{DC}(\Pi_n)$

Lemma (Cubic relation)

$$u, v, x \notin S \subseteq [n]$$

$$n(Suvx, u, v) + n(Sux, u, x) = n(Suv, u, v) + n(Suvx, u, x)$$

Lemma (Submodular normal)

 $\mathbf{n}(S, u, v)$ are the facet's normals of $\mathbb{DC}(\Pi_n)$

Lemma (Cubic relation)

$$u, v, x \notin S \subseteq [n]$$

$$\mathbf{n}(Suvx, u, v) + \mathbf{n}(Sux, u, x) = \mathbf{n}(Suv, u, v) + \mathbf{n}(Suvx, u, x)$$

Tools: Shepard–McMullen indecomposability criterions

Theorem (Shepard, '63)

If every two vertices of P are joined by a strong chain of indecomposable faces, then P is indecomposable.

Theorem (McMullen, '87)

If a (strongly connected family of) indecomposable face(s) touches every facets, then P is indecomposable.

Improvement of McMullen's criterion:

Theorem (Loho, Padrol, P., '24+)

If a (strongly connected family of) indecomposable face(s) touches every facets except F, and F has a vertex with two neighbors outside of F, then P is indecomposable.

Multiple choice questions (sometimes several answer possible)

A sum of 2 co-planar triangles can have	3 edges	4 edges	5 edges	6 edges
$\mathcal{N}_{P+Q} = ext{ of } \mathcal{N}_{P}, \mathcal{N}_{Q}$	union	intersection	common refinement	product
Edge directions of $GP \in$	$\{\boldsymbol{e}_i\}_i$	$\{\boldsymbol{e}_i + \boldsymbol{e}_j\}_{i,j}$	$\{\boldsymbol{e}_i-\boldsymbol{e}_j\}_{i,j}$	$\{oldsymbol{e}_i\pmoldsymbol{e}_j\}_{i,j}$
Z_{G} has no hexagonal face iff G is	a tree	K₃-free	K₄-free	complete
form a basis of $Vect(\mathbb{SC}_n)$	$\{\Delta_X\}_{X\subseteq[n]}$	nestohedra	shard	matroid
			polytopes	polytopes
$dim\mathbb{SC}_3=$	3	4	5	11
Group of symmetries of \mathbb{SC}_n :	Free _n	\mathcal{S}_n	$S_n imes \mathbb{Z}_2$	$\mathcal{S}_n imes \mathbb{Z}_n$
# 3-dim indecomposable GP:	3	5	7	37

Exercises

- $\underline{\mathbf{1}}$. Show that $\mathrm{Vert}(\mathsf{P}+\mathsf{Q})\subseteq\{\pmb{u}+\pmb{v}\;;\;\pmb{u}\in\mathrm{Vert}(\mathsf{P}),\;\pmb{v}\in\mathrm{Vert}(\mathsf{Q})\}.$ Find an example with strict inclusion. Prove that $\mathcal{N}_{\mathsf{P}+\mathsf{Q}}$ is the common refinement of \mathcal{N}_{P} and \mathcal{N}_{Q} .
- <u>2.</u> Find all the ways to write the 2-dimensional permutahedron as a Minkowski sum of indecomposable polytopes.
- $\underline{3}$. Prove that $\pmb{h}_{P+Q} = \pmb{h}_P + \pmb{h}_Q$ and $\ell_{P+Q} = \ell_P + \ell_Q$. What are \pmb{h}_{P+t} and ℓ_{P+t} ?
- <u>4.</u> Prove that a triangle is Minkowski indecomposable. Deduce that all simplicial polytopes are Minkowski indecompsable.

Exercises

 $\underline{5}$. Take vectors $\boldsymbol{s}, \boldsymbol{s}', \boldsymbol{r}_1, \ldots, \boldsymbol{r}_{d-1}$ such that $C = \operatorname{cone}(\boldsymbol{s}, \boldsymbol{r}_1, \ldots, \boldsymbol{r}_{d-1})$ and $C' = \operatorname{cone}(\boldsymbol{s}', \boldsymbol{r}_1, \ldots, \boldsymbol{r}_{d-1})$ are simplicial cones which intersect on their proper face $C \cap C' = \operatorname{cone}(\boldsymbol{r}_1, \ldots, \boldsymbol{r}_{d-1})$. Show that there exist $\alpha_{\boldsymbol{s}}, \alpha_{\boldsymbol{s}'} > 0$ and $\alpha_{\boldsymbol{r}_i} \in \mathbb{R}$ such that:

$$\alpha_{\mathbf{s}}\mathbf{s} + \alpha_{\mathbf{s}'}\mathbf{s}' + \sum_{i} \alpha_{\mathbf{r}_{i}}\mathbf{r}_{i} = \mathbf{0}$$

<u>6.</u> Compute (and draw) the deformation cone of a parallelogram (use the edge-lengths point of view). What about a parallelopiped? Show that there is a **unique** way to write a parallelopiped P as a sum of Minkowski indecomposable polytopes.

 $\underline{7}$. Show that \mathbb{SC}_n has $\binom{n}{2}2^{n-2}$ facets. Give bounds on its number of rays.

Exercises

- <u>8.</u> Show that graphical zonotopes are generalized permutahedra. Show that nestohedra are generalized permutahedra. Show that matroid polytopes are generalized permutahedra. Which are indecomposable?
- <u>9.</u> If G is triangle-free, then $\mathbb{DC}(Z_G)$ is simplicial (see lecture). Each face of $\mathbb{DC}(Z_G)$ is associated to a polytope: which polytope?
- 10. The weighted graphical zonotope of a graph G=(V,E) and weight (on edges) $\omega: E \to \mathbb{R}_+^*$ is $Z_{G,\omega}:=\sum_{(i,j)\in E}\omega(i,j)[\boldsymbol{e}_i,\boldsymbol{e}_j].$ Show that: $\{\text{zonotopes}\}\cap \{\text{generalized permutahedra}\}=\{\text{weighted graphical zonotopes}\}.$ Show that the cone of weighted graphical zonotopes is a section (i.e. intersection with a linear sub-space) of the submodular cone, such that the rays of this section are rays of \mathbb{SC}_n . What is the dimension of this section?
- <u>11.</u> Prove the cubic relations hold. Show that cubic relations generates all linear relations between submodular vectors.